skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson, Jay_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Analysis of the ordinary mode (O‐mode) instability is performed to comprehend the nonthermal continuum (NTC) radiation near the plasmapause, taking into account the relativistic wave‐electron resonance effect. The energy source is the anisotropy in the velocity of the minority suprathermal electron population. Numerical solutions demonstrate that the O‐mode can be unstable with multiple narrow frequency bands located close to harmonics of the electron cyclotron frequency above the local electron plasma frequency. These waves have narrow beaming angle bands of nearly relative to the ambient magnetic field. Our findings indicate that NTC radiation generated by this wave‐electron resonance instability near the plasmapause can propagate nearer to the magnetic equator with multiple harmonics, which is in agreement with a recent statistical study using Van Allen Probes. 
    more » « less
  2. Abstract We examine coupling of fluctuations in the solar wind with electromagnetic ion cyclotron (EMIC) waves in the magnetosphere using an advanced full‐wave simulation code, Petra‐M. Dipole tilt dramatically affects the coupling process. While very little wave power can reach the inner magnetosphere without tilt effects, a tilted dipole field dramatically increases the efficiency of the coupling process. Solar wind fluctuations incident at high magnetic latitude effectively reaches the ground along the field line and mode‐convert to linearly polarized field‐aligned propagating waves at the Alfvén and IIH resonances. Therefore, solar wind compressions efficiently drive linearly polarized EMIC waves when the dipole angle is tilted toward or away from the Sun‐Earth direction. 
    more » « less
  3. Abstract We explore the characteristics of EMIC waves generated in a non‐dipole, compressed magnetic field at the minimum of the magnetic field. We conducted 2D full‐wave simulations using the Petra‐M code, focusing on a compressed magnetic field in the outer dayside magnetosphere for a range ofLvalues . By comparing the simulation results with MMS observations, we aim to understand how the observed wave characteristics are affected by a shifting source region across different L‐shells. Our findings indicate that the direction of the Poynting vector systematically changes depending on the local source location of the wave, which is consistent with the observations. EMIC waves propagate along the magnetic field line and reach both the northern and southern hemispheres; however, there is a notable difference in the power of EMIC waves between the two hemispheres, indicating seasonal asymmetries in their occurrence. 
    more » « less